메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한수희 (Kyungil University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제35권 제3호
발행연도
2017.6
수록면
187 - 194 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
본 연구는 대용량 위성영상의 신속한 무감독 분류를 위해 k-means 군집화 알고리즘을 병렬처리하는 방법을 소개한다. K-means 군집화 알고리즘은 대표적인 무감독분류 알고리즘으로서 주로 감독분류의 전처리 단계로 활용되지만 연산 집약적이고 사용자의 개입이 적어 병렬처리의 효과를 분명하게 나타낼 수 있다. 병렬처리 코드는 OpenMP 기반의 멀티쓰레딩을 이용하여 구현하였다. 실험은 1대의 PC에서 시행하였으며 이 PC의 CPU에는 8개의 멀티코어가 집적되어 있다. 실험 영상으로는 7개 밴드로 구성한 30m 해상도의 LANDSAT 8 OLI 영상과 8개 밴드로 구성한 10m 해상도의 Sentinel-2A 영상을 사용하였다. 각각 10개 군집을 사용하여 순차처리 및 병렬처리를 수행한 결과 병렬처리가 순차처리에 비해 6배 내외의 속도를 나타내었다. 순차처리와 병렬처리 결과의 일치성 평가를 위해 각 군집의 중심값과 분류된 화소의 수를 비교하고 분류 결과 영상간 차분을 수행하였고 결과로 모든 정보가 일치하였다. 본 연구는 병렬처리를 통해 대용량 위성영상의 처리 속도를 상당히 향상시킬 수 있음을 입증하고 있다는 점에서 의미가 있다고 판단된다. 아울러 OpenMP 기반의 멀티쓰레드를 이용하면 비교적 쉽게 병렬처리를 구현할 수 있지만 false sharing의 발생을 억제하도록 코드를 설계하는데 주의를 기울여야 함도 확인할 수 있었다.

목차

Abstract
초록
1. 서론
2. 본론
3. 적용 및 평가
4. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-533-000977334