메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오광석 (한경대학교) 박관우 (서울대학교) 이지수 (현대자동차) 윤재민 (현대자동차)
저널정보
한국자동차공학회 한국자동차공학회논문집 한국자동차공학회논문집 제26권 제6호
발행연도
2018.11
수록면
755 - 763 (9page)
DOI
10.7467/KSAE.2018.26.6.755

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper describes a model predictive control based rear wheel torque vectoring algorithm of a 4WD vehicle for improving the driving stability. The model predictive control algorithm has been used to compute the optimal longitudinal tire forces of rear-left and rear-right wheels based on the linearized error dynamics. The used error dynamic model has been derived from the planar vehicle dynamic model that was represented by longitudinal, lateral, and yaw dynamics. In order to compute the reasonable optimal tire forces, dynamic physical constraints(e.g., tire force limit and change rate limit of tire force) have been applied to the model predictive control algorithm. Based on the computed optimal tire forces of the rear wheels, the torque distribution ratio between the rear-left wheel and rear-right wheel of the vehicle has been computed based on the wheel dynamics. The yaw rate in a steady state has been used as a reference value for improving the driving stability. The use of the proposed model predictive torque vectoring algorithm can bring about not only good torque distribution, but also sound driving stability. For the performance evaluation, simulation studies with the proposed torque vectoring algorithm have been conducted on Matlab/CarSim environment under various driving conditions, such as step steer, double lane change, and high speed avoidance. The simulation results showed that the proposed model predictive torque vectoring algorithm produced both reasonable torque distribution and good driving stability.

목차

Abstract
1. 서론
2. 모델 예측 제어 기반 후륜 토크벡터링
3. 시뮬레이션 기반 성능평가
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-556-003548949