메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ozcan, Cemal (Department of Industrial Products Design, Fethi Toker Faculty of Fine Arts and Design. Karabuk University) Korkmaz, Mustafa (Department of Wood Products Industrial Engineering, Faculty of Technology, Duzce University)
저널정보
한국목재공학회 목재공학(Journal of the Korean Wood Science and Technology) 목재공학 제47권 제4호
발행연도
2019.1
수록면
408 - 417 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Non-destructive test techniques are becoming increasingly important for assessment and maintenance. These techniques are very useful for assessment of materials such as wood, whose performance can vary considerably depending on the conditions of use. It is possible to estimate some mechanical properties of a material by determining the movement of energy through the material with the help of these techniques. In this study, it was investigated whether the wood material could be tested nondestructively by the heat energy produced by a source. The correlations between the thermal conductivity and mechanical properties of Scots pine (Pinus sylvestris L.) and sessile oak (Quercus petraea L.) woods were investigated. The thermal conductivity (TC), density, modulus of rupture (MOR), compression strength (CS), and modulus of elasticity (MOE) values of samples were measured according to the related standards and these values were correlated with each other. The linear and multiple regression tests were employed to determine the correlation between thermal conductivity and mechanical properties. The results showed that there is a very strong correlation between thermal conductivity and both density and MOR values. However, the correlations between TC and both MOE and CS were moderate. The results of this study suggest that the thermal conductivity value can be used to estimate the density and some mechanical properties of wood.

목차

등록된 정보가 없습니다.

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0