메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jing Li (Shanghai University of Electric Power) Yuyao Guan (Shanghai University of Electric Power) Pengpeng Ding (Shanghai University of Electric Power) Shiwei Wang (Shanghai University of Electric Power)
저널정보
한국통신학회 한국통신학회 APNOMS 한국통신학회 APNOMS 2020
발행연도
2020.9
수록면
243 - 246 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Effective network congestion control strategies are the key to secure the normal operation of complex and changeable networks. The fundamental assumptions of many existing TCP congestion control variants dominated by hand-crafted heuristic algorithms are no longer valid. We propose an algorithm called TCP-Proximal Policy Congestion Control (TCP-PPCC), which is based on deep reinforcement learning algorithm Proximal Policy Optimization (PPO). TCP-PPCC updates the policy offline from the features of the preceding network state and feedback from the current network environment and adjusts the congestion window online with the updated policy. The senders with TCP-PPCC can learn about the changes in network bandwidth more accurately and adjust the congestion window in time. We demonstrate the performance of TCP-PPCC by comparing it with the traditional congestion control algorithm NewReno in four network scenarios with the ns-3 simulator. The results show that in scenario 2, TCPPPCC takes 58.75% improvement in average delay and 27.80% improvement in throughput compared with NewReno.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. DEEP REINFORCEMENT LEARNING FOR CONGESTION CONTROL
IV. DRL TRAINING CONFIGURATION AND ARCHITECTURE
V. EVALUATION
VI. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-567-001678393