메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박가현 (한국건설기술연구원) 김종관 (한국건설기술연구원) 이석형 (한국건설기술연구원) 김민기 (메타로고스) 이경륜 (메타로고스) 한진태 (한국건설기술연구원)
저널정보
한국지반공학회 한국지반공학회논문집 한국지반공학회논문집 제38권 제11호
발행연도
2022.11
수록면
87 - 95 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
국토지반정보 포털시스템이 구축된 지반정보는 최근 설계, 시공, 지하안전관리, 재해재난 평가 등 다양한 분야에서 활용되고 있다. 그러나 전국적으로 기 구축된 약 30여만공의 지반정보는 누락되거나 잘못된 정보를 다수 포함하고 있어 데이터 활용시 신뢰도를 확보하기가 어렵다. 따라서 분석 데이터의 신뢰도를 확보하기 위해서는 지반정보를 활용하기 전 단계에서 지반정보의 정제(품질관리)가 반드시 필요하다. 본 연구에서는 딥러닝 기법 중 하나인 인공신경망 기법을 활용하여 지반정보를 자동으로 품질관리 하는 방안에 대하여 제안하였다. 특히, 가장 일반적으로 사용되는 정보인 표준관입시험 결과와 지층정보를 이용하여 지반정보의 이상치를 탐지하였다. 서울시 지반정보 데이터를 이용하여 분석하였으며, 검증데이터에 대한 오분류 비율은 5.4%로 확인되었다. 신경망 모델에서 이상치 분류된 데이터만을 추후에 검사함으로써 효율적으로 이상치를 탐지할 수 있을 것으로 기대된다.

목차

Abstract
요지
1. 서론
2. 국토지반정보 포털시스템에서 획득한 지반정보의 오류 사례 및 기존 품질관리 기법
3. 데이터 수집 및 전처리
4. AI를 이용한 지반정보 품질관리 기법
5. 요약 및 결론
참고문헌 (References)

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-531-000228179