메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shakhboz Abdigapporov (Inha University) Shokhrukh Miraliev (Inha University) Jumabek Alikhanov (Inha University) Vijay Kakani (Inha University) Hakil Kim (Inha University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
819 - 824 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the era of big data, increased focus has been on improving neural network based Deep Learning models. This led to various classification networks which can be used as a backbone in multi-task learning. However, depending on the selected backbone, multi-tasking performance differs. While given backbone network shows better performance on a detection task, does not mean such performance generalizes in segmentation task as well. Detailed investigations should be conducted to achieve best inference speed-accuracy trade-off prior to implementing a single neural network, which handles multiple tasks. In this research, the performance comparison among EfficientNet, ResNet101, VGG16, ResNet50 and MobilenetV2 on the Berkeley Driving Dataset (BDD100K) for autonomous driving using multi-tasking architecture are provided. Backbones that offer best time-accuracy trade-off for multi-task learning are evaluated. Implemented architecture contains three most crucial tasks in self-driving operations, object detection, drivable area segmentation and lane detection. EfficientNet based model showed the best mAP on the object detection task, as well as on the segmentation tasks, extracting both the long and wide roads with accurate lane lines. The model with MobilenetV2 backbone however, demonstrates the fastest inference speed with relatively lower performance in all tasks.

목차

Abstract
1. INTRODUCTION
2. RELATED WORKS
3. NETWORK ARCHITECTURE
4. EXPERIMENTS
5. RESULTS
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0