메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김지은 (연세대학교) 이덕우 (계명대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제26권 제4호
발행연도
2023.4
수록면
533 - 541 (9page)
DOI
10.9717/kmms.2023.26.4.533

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we show comparison results of edge detection of images that have additive gaussian noise or salt and pepper noise by using various techniques of noise removal such as filtering, morphology and deep learning based ones. In particular, this present work provides comparison results of noise removal by using gaussian filter, open and close operations of morphology and auto-encoder model followed by carrying out edge detection. Robert cross, Sobel, Prewitt and Canny detectors are used for edge detection of the images with noise removal. Experimental results show that noise removal results are different with characteristics of noise and techniques applied for noise removal. In addition, deep learning based technique, auto-encoder does not always shows superior results of noise removal, particularly in the case of existence of salt-pepper noise. In the experiments, gaussian noise or salt-pepper noise is used and peak signal noise ratio (PSNR) is used for quantitative comparison and the results of edge detection is qualitatively compared from visual perspective.

목차

ABSTRACT
1. 서론
2. 영상의 잡음 제거
3. 윤곽선 검출
4. 실험 결과
5. 결론
REFERENCE

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-001439805