메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김진석 (상지대학교) 박소현 (상지대학교) 정로아 (상지대학교) 이은수 (상지대학교) 김윤서 (상지대학교) 성현동 (서강대학교) 유준상 (상지대학교)
저널정보
대한한의학회 대한한의학회지 대한한의학회지 제45권 제3호
발행연도
2024.9
수록면
193 - 210 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objectives: We analyzed Sasang constitution case reports using text mining to derive network analysis results and designed a classification algorithm using machine learning to select a model suitable for classifying Sasang constitution based on text data.
Methods: Case reports on Sasang constitution published from January 1, 2000, to December 31, 2022, were searched. As a result, 343 papers were selected, yielding 454 cases. Extracted texts were pretreated and tokenized with the Python-based KoNLPy package. Each morpheme was vectorized using TF-IDF values. Word cloud visualization and centrality analysis identified keywords mainly used for classifying Sasang constitution in clinical practice. To select the most suitable classification model for diagnosing Sasang constitution, the performance of five models—XGBoost, LightGBM, SVC, Logistic Regression, and Random Forest Classifier—was evaluated using accuracy and F1-Score.
Results: Through word cloud visualization and centrality analysis, specific keywords for each constitution were identified. Logistic regression showed the highest accuracy (0.839416), while random forest classifier showed the lowest (0.773723). Based on F1-Score, XGBoost scored the highest (0.739811), and random forest classifier scored the lowest (0.643421).
Conclusions: This is the first study to analyze constitution classification by applying text mining and machine learning to case reports, providing a concrete research model for follow-up research. The keywords selected through text mining were confirmed to effectively reflect the characteristics of each Sasang constitution type. Based on text data from case reports, the most suitable machine learning models for diagnosing Sasang constitution are logistic regression and XGBoost.

목차

서론
대상 및 방법
결과
고찰
결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090658285