메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Handdeut Chang (Korea Advanced Institute of Science and Technology) Sangjoon J. Kim (Korea Advanced Institute of Science and Technology) Jung Kim (Korea Advanced Institute of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2016
발행연도
2016.10
수록면
912 - 917 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The stabilization of most artificial systems has been achieved by sensor based state feedback control with high signal transmission speed and high computational power, and stiff structures. In contrast, many biological systems can achieve similar or superior stable behavior with low signal transmission speed and low computational power via nervous system, and flexible structures. In order to explain this phenomenon, our research group focused the concept of self-stabilization of musculoskeletal system. Self-stabilization is defined as the ability to restore its original state after a disturbance with feedforward control. In our previous research, we analytically investigated the self-stabilizing condition of biological musculoskeletal system using the Lyapunov stability criteria and come to a conclusion that stiffness and viscosity of the joint play significant role in self-stabilization. Particularly, there exist two types of stiffness in biological muscle; one is spring-like passive stiffness and the other is active stiffness that is proportional to muscle activation. We believe that active stiffness plays a significant role in self-stabilization for dynamic movement. In this paper, we develop an active stiffness mechanism that can assign self-stabilizing function to a robotic arm. As a result, theoretically predicted self-stabilizing function is experimentally verified and explains why biological musculoskeletal system can be stabilized with feedforward control.

목차

Abstract
1. INTRODUCTION
2. Active Stiffness Mechanism Design Inspired by Biological Muscle
3. Simulation and Experimental Results
4. Discussion
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-001866899