메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이규남 (충북대학교) 임종태 (충북대학교) 복경수 (원광대학교) 유재수 (충북대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제19권 제11호
발행연도
2019.11
수록면
567 - 577 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 학계, 산업계 등에서 접하는 기존의 문제를 머신러닝을 통해 해결하려는 시도가 증가하고 있다. 이에 따라 이탈, 사기탐지, 장애탐지 등 일반적이지 않은 상황을 머신러닝으로 해결하기 위한 다양한 연구가 이어지고 있다. 대부분의 일반적이지 않은 환경에서는 데이터가 불균형하게 분포하며, 이러한 불균형한 데이터는 머신러닝의 수행과정에서 오류를 야기하므로 이를 해결하기 위한 불균형 데이터 처리 기법이 필요하다. 본 논문에서는 머신러닝을 위한 불균형 데이터 처리 방법을 제안한다. 제안하는 방법은 샘플링 방법을 중심으로 다수 클래스(Major Class)의 모집단 분포를 효율적으로 추출하도록 검증하여 머신 러닝을 위한 불균형 데이터 문제를 해결한다. 본 논문에서는 성능평가를 통해 제안하는 기법이 기존 기법에 비해 성능이 우수함을 보인다.

목차

요약
Abstract
I. 서론
Ⅱ. 관련 연구
Ⅲ. 제안하는 샘플링 방법
Ⅳ. 성능 평가
Ⅴ. 결론
참고문헌

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-310-000100133