메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Nishant Chauhan (Daegu University) Byung-Jae Choi (Daegu University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.19 No.4
발행연도
2019.12
수록면
315 - 322 (8page)
DOI
10.5391/IJFIS.2019.19.4.315

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Artificial intelligence enhances the boundaries and capabilities of medical imaging. Hence, researchers are continuously attempting to develop an efficient and automated diagnosis system to increase the accuracy and performance to diagnose the brain abnormality. Therefore, it is required that a suitable method to diagnose and classify brain-related diseases such as Alzheimer disease, cancer, dementia, etc. Magnetic resonance imaging (MRI) is a powerful imaging technique in neuroscience for studying brain images. In the past years, many brain MRI classification techniques were proposed. Machine learning and deep learning have demonstrated a wonderful performance in the classification task. In this paper, the study of various brain MRI classification techniques has been provided. The aim of this study is to help the doctors/neurologists in selection of appropriate classification method based on several parameters like accuracy, computer complexity, and low training data availability. We also analyze and compare the performance of different classification methods based on several evaluation metrics.

목차

Abstract
1. Introduction
2. Classification Approaches for Human Brain MRI Images
3. Performance Analysis of Classification Methods
4. Concluding Remarks
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0