메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Muhammad Omair Khan (Inje University) Hee-Cheol Kim (Inje University) Moon-il Joo (Inje University)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2024년도 추계종합학술대회 논문집 제28권 제2호
발행연도
2024.10
수록면
39 - 42 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Brain tumors are potentially life-threatening diseases that need to be diagnosed as soon as possible to be effectively treated. Enhancing patient results and quality of life requires an accurate and timely classification of brain tumors. This research aims to create an advanced deep-learning model that accurately recognizes brain tumors from MRI images. Through data augmentation and optimization strategies, we use CNN and transfer learning capabilities to improve the Xception architecture’s performance. The main objective is to develop a strong and trustworthy model that can distinguish between different kinds of tumors of the brain, including gliomas, meningiomas, pituitary tumors, and no tumors at all. We utilize significant data preprocessing and augmentation techniques to improve model generalization using the Brain Tumor dataset on Kaggle. There are 14133 images in the dataset. To accurately identify the brain tumour MRI images, we used Xception, model and it achieved 99% accuracy. This accomplishment could significantly improve patient outcomes because of its astounding 99% accuracy rate. The model can efficiently classify brain tumors from MRI images, leading to earlier diagnosis and better patient treatment decisions.

목차

ABSTRACT
Ⅰ. Introduction
Ⅱ. Literature Review
Ⅲ. Methodology
Ⅳ. Experimental Results
Ⅴ. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0