메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jeehoon Park (POSTECH) YoungSu Park (POSTECH) Sang Woo Kim (POSTECH)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2008
발행연도
2008.10
수록면
1,579 - 1,582 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes an efficient method to locate the automated guided vehicle (AGV) into the parking position using artificial visual landmark. For automated transshipment system in container terminals, the port AGV is used to transport containers autonomously and efficiently. To co-operate with the transfer crane, accurate guiding and positioning system is required. Using computer vision algorithms that detect and track the object from the video streams, we extract the exact position and relative distance with respect to the parking position. The artificial landmark is designed for effective detection based on corner feature and color information. After detection phase finds the position of the landmark in the captured image, tracking phase follows the trace of the landmark in the successive image sequences. Tracking phase consists of two stages, estimation and refinement steps. Optical flow vector around the detected point in the current image is calculated by pyramidal Lucas-Kanade feature tracker, and it is used to estimate the current position of the landmark. Then, the refinement step uses some features of the landmark as references to correct the estimated position of the object. Whole process is performed in HSI color space so that the system can be robust to illuminant variation. Experiments show reliable results of parking movement of the AGV. Our approach is simple, effective and robust.

목차

Abstract
1. INTRODUCTION
2. SYSTEM CONFIGURATION
3. DETECTING LANDMARK
4. TRACKING LANDMARK
5. EXPERIMENTAL RESULT
6. CONCLUSION
7. ACKNOWLEDGEMENTS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000985458